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ABSTRACT 
When selecting a system j?om multiple candidates, the customer seeks the one that best meets his or her needs. 
Recently the desire for evolvable systems has become more important and engineers are striving to develop systems 
that accommodate this need. In response to this search for evolvabili@, we present a historical perspective on 
evolvability, propose a refined definition of evolvabiliy, and develop a quantitative method for measuring this 
property. We address this quantitative methodology from both a theoretical and practical perspective. This 
quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study. 

1 INTRODUCTION 
Evolvability, the ability of a system to adapt to changing requirements, is a property many engineers seek when 
developing a new system. Unfortunately, the system properties that result in evolvability are not well understood, 
making it hard to measure a system’s potential to evolve and even harder to build an evolvable system. We 
approach this problem fiom the ground up, and begin by asking ourselves two questions: 

1) “What do we want in an evolvable system?’ 
2) “Why do we want an evolvable system?” 

1.1 
Our story begins in the early 1970s as the waterfall model is introduced by W. Royce [Buede, 20001. This model 
was originally developed for the software engineering development process but has been adapted to systems 
engineering. Characterized by sequential life-cycle phases, the waterfall model is well known throughout the 
software and systems engineering communities. Unfortunately, the waterfall model only allows iteration between 
neighboring phases and does not capture iteration between widely separated phases (something that is not 
uncommon in the development process). The waterfall model formed the basis for DoD-STD-2 167A Defense 
Systems Software Development [Buede, 20001 which was released in February 1988. During the late 1980s and 
early 1990s this document was the default standard in the United States and throughout the world. While DoD- 
STD-2 167A never explicitly dictated the waterfall model, it was perceived by many to do so. This model, at times, 
could be restrictive and prevent developers fiom following the most efficient development strategy mewberry, 
19951. In response to these concerns, DoD-STD-2167A was replaced by MIL-STD-498 in December 1994. MIL- 
STD-498 was an interim document intended to increase flexibility until a commercial equivalent could be 
developed. This happened four years later with the release of EEEEIA 12207 in April 1998 (at this point MIL- 
STD-498 was canceled and replaced by IEEEEIA 12207). 

In the late 1980s B. Boehm created a different software development model: the spiral model [Boehm, 19881. 
This model accounted for iterations and evolution not found in the waterfall model. As with the waterfall model, the 
spiral model began its life in software engineering and later made the transition to systems engineering. About the 
same time Boehm authored the spiral model, K. Forsberg and H. Mooz introduced the Vee model, often referred to 
as incremental development [Mooz and Forsberg, 2004; Buede, 20001. Recently, a strong preference for spiral and 
evolutionary development (as seen in the spiral and vee models) has been stated by the Department of Defense 
(DoD) [DoD Directive 5000.1,2003; DoD Instruction 5000.2,2003] and recommended to the National Aeronautics 
Space Administration (NASA) [Aldridge et al., 20041. 
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1.2 
DoD Instruction 5000.2 [2003] states that “evolutionq acquisition is the preferred DoD strategy for the rapid 
acquisition of mature technology for the user. An evolutionary approach delivers capability in increments, 
recognizing, up front, the need for hture capability improvements. The objective is to balance needs and available 
capability with resources, and to put capability into the hands of the user quickly.” Simply put, evolutionary 
acquisition is the “successive improvement of solution versions based on experience with prior versions” [Mooz and 
Forsberg, 20041. The two preferred models for achieving evolutionary acquisition are spiral and incremental 
development. DoD Instruction 5000.2 [2003] defines these approaches as follows: 

Evolutionary Acquisition and SpiraUIncremental Development 

Spiral Development: In this process, a desired capability is identified, but the end-state requirements are not 
known at program initiation. Those requirements are refined through demonstration and risk management; 
there is continuous user feedback; and each increment provides the user the best possible capability. The 
requirements for future increments depend on feedback from the users and technology maturation. 
Incremental Development: In this process, a desired capability is identified, an end-state requirement is 
known, and that requirement is met over time by developing several increments, each dependent on available 
mature technology. 

The spiral model is shown in Figure 1. In this model, the radial dimension represents the cumulative cost and 
the angular dimension represents the progress made in completing each cycle of the spiral [Boehm, 19881. The 
model is characterized by four major processes (clockwise from top left of spiral): design, evaluation and risk 
analysis, development and testing, and planning. These processes may be repeated as many times as necessary 
[Buede, 20001. The spiral model, however, is not perfect. Just as with the waterfall model, there are cases where 
the spiral model can be restrictive. Indeed, Mooz and Forsberg [2004] caution against using evolutionary 
development or the spiral model in cases where they would not provide the most effective approach. What is 
important to note here is that there is probably not a one-model-fits-all solution. 

Figure 1. Spiral model [Boehm, 19881. 
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1.3 
We now return to the two questions posed at the beginning of this introduction. In response to these, we conclude 
the following: 

Why Measures of System Evolvability Are Needed 

1) In an evolvable system, we look for a system that can adapt to new requirements at a cost less than what is 
required to build a new system. 

2) We want an evolvable system because it gives the customer additional flexibility. With an evolvable 
system the customer can use existing infrastructure to tackle changing requirements- both planned and 
unplanned. 

With these objectives in mind, we begin our search for a quantitative measure of system evolvability. It is clear that 
evolutionary development requires an evolvable system to be effective. Therefore when comparing multiple 
systems, and intending to use evolutionary development, it is important to compare and contrast their potential to 
evolve. Such a comparison lends itself to a qualitative comparison through a narrative, pros/cons list, or similar 
means. As is discussed in more detail later, comparing systems in a numerical fashion is preferable to the 
sometimes easier qualitative descriptions. In order to develop a quantitative measure for system evolvability, we 
must first create a clearer definition of this property. 

2 DEFINING EVOLVABILITY 
Now that we have established what we want in an evolvable system and why we want it, we proceed by developing 
a more precise definition of evolvability. Over the years, there have been many attempts to define evolvability 
[Isaac and McConaughy, 1994; Percivall, 1994; Rowe and Leaney, 1997; Rowe, Leaney, and Lowe, 19981. Based 
on these past definitions, we propose the following definition of evolvability: 

Evolvability: The capacity of a system to successfully adapt to changing requirements [IEEE, 19901 
throughout its lifecycle without compromising architectural integrity. Furthermore, an evolvable system must 
meet the new needs of the customer in a more cost effective manner than developing a new system. 

Despite a rather straightforward definition, evolvability can take many different forms. After all, there are 
many ways that a system can accommodate change. It can be argued, therefore, that the larger property of 
evolvability is actually a composite of the many methods a system possesses for adapting to change. Understanding 
this functional breakdown, termed the “taxonomy of change” by Rowe, Leaney, and Lowe [1998], is fundamental to 
developing a quantitative measure of the larger property of evolvability. Generally, evolvability may be subdivided 
into two categories: static and dynamic (or robust and flexible using the terminology of Saleh, Hastings, and 
Newman [2001]). Further inspection shows that a system can adapt to change in one of four ways: make no changes 
to the system (generality), reconfiguring existing system components (adaptability), increasing the size of existing 
system components (scalability), or adding new components (extensibility). Figure 2 graphically illustrates the 
functional breakdown of evolvability. 

Evolvabili 

I 
Static 
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Figure 2. A functional breakdown of evolvability. 

Detailed definitions of the four classes of evolvability, largely inspired by the work of Rowe, Leaney, and Lowe 
[I9981 and information available in the SMC Systems Engineering Primer and Handbook [2004], are as follows: 
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Generality: The capacity of a system to accommodate a change in requirements without altering the existing 
architectural design or implementation strategy. 
Adaptability: The capacity of a system to accommodate a change in requirements through rearranging existing 
system components within the current architecture without changing other components or their integration 
solution. 
Scalability: The capacity of a system to accommodate a change in requirements by increasing the size of 
architectural components to accommodate increased loads. 
Extensibility: The capacity of a system to accommodate a change in requirements through adding new 
components or through a major change in the architecture or implementation strategy. 

3 FIGURES OF MERIT 
The first step when evaluating a system is to consult the customer to identify their needs and objectives. Then 
figures of merit (FOM) that reflect these desires may be selected. A FOM is an objective and quantitative measure 
of system effectiveness. According to the NASA Systems Engineering Handbook [ 1995: 831, “a measure of system 
effectiveness describes the accomplishment of the system’s goals and objectives quantitatively. Each system (or 
family of systems with identical goals and objectives) has its own measure of system effectiveness. There is no 
universal measure of effectiveness for NASA systems, and no natural units with which to express effectiveness.” 
Simply put, FOMs help the analyst and the customer identify the system that best meets their objectives. 

A good FOM should be worded and calculated such that a higher value represents a more desirable result. In 
addition, according to the SMC Systems Engineering Primer and Handbook [2004], a good FOM also has the 
following seven characteristics: 

1) Relates to performance 
2) Simple to state 
3) Complete 
4) States any time dependency 
5) States any environmental conditions 
6 )  Can be measured quantitatively (if required, may be measured statistically or as a probability) 
7) Easy to measure 

Of particular importance to the work that follows is the sixth characteristic- the ability to quantitatively assess a 
FOM. A numerical value is important, among other reasons, for comparison and compilation purposes. It is 
difficult to rank a number of qualitative descriptions, such as narratives, while ordering a set of numbers is 
straightforward. This problem is compounded when there is a need to compare aggregate FOMs. 

3.1 Standard Scoring Functions 
Earlier, we introduced the four classes of evolvability: generality, adaptability, scalability, and extensibility. From 
this description, it is clear that evolvability is an aggregate quantity, making it difficult to measure this property 
directly. Instead, we measure each class of evolvability and then combine them to achieve an overall measure 
evolvability. Each class of evolvability may be viewed as a bottom-level FOM, while the overall property of 
evolvability may be viewed as a top-level FOM. 

Because the four bottom-level FOMs will be combined, it is necessary to standardize and normalize their 
output. Standard scoring functions, as described by Daniels, Werner, and Bahill[2001], are used to do this. These 
mathematical functions accept parameters specific to a FOM as an input, and yield a real number on a defined scale 
(usually between zero and one). Such functions are useful because they can take in a variety of parameters (with 
different units and different scales) for different FOMs and transform these inputs into a set of values on a scale 
common to all FOMs. These scoring fimction curves can have a number of shapes, but a higher FOM score should 
indicate a more desirable outcome. 

The scoring functions used here are the 12 families of standard scoringfunctions introduced by A.W. Wymore 
[ 19931 and are identified by SSFx, where x is the family of scoring function. These functions restrict the output on a 
scale between zero and one. The nomenclature used is as follows (fiom Daniels, Werner, and Bahill [2001]) 

Y: 
Score: 
L:  

The input value for the FOM 
The output of the scoring function 
The lower threshold of the input value 

4 



B: 

S: 

Baseline (status quo) value for the FOM. By definition baseline values are always assigned a score of 
0.5 
The slope of the tangent to the scoring function at the baseline value B. This value represents the 
maximum incremental change in the customer's quantitative judgment with each incremental change 

The domain of definition of the scoring function. 
in input. 

D: 

Of interest here is SSFl and SSF7, shown in Figure 3. SSFl is used where high input values are preferable and 
SSF7 is used where low input values are preferable. Wymore [1993: 390-3911 defines these functions as follows 

1 
' S  B+v-Z'L) 

SSFl(L,B,S,D) Score = 
1 + ((B - L)/(v - L))z ( 

1 SSF7(L,B,SYD) Score = 1 - 
1 + ((B - L)/(v - L))-2's(B+v-2*L) 

where v, L, B, S, and D are as defined in the nomenclature above. Now, turning our attention to Figure 3, we point 
out a few important aspects of the Wymorian standard scoring functions. First, the output of the function is most 
responsive to change when the input is near the baseline value. Values of S and B should be chosen such that the 
input values the customer is most interested in lie within the linearhear-linear portions of the curve. This curve 
flattens out at the extremes, indicating that changes in these regions are not as important to the customer. Take, for 
example, a power budget (applying SSF1) where B is the baseline required power. When comparing two systems, 
one with a 10% margin and another with a 50% margin, the customer would probably prefer the one with the 50% 
power margin. Because these values are near the baseline, the system with the larger margin would receive a 
notably higher score. Now consider two other systems, one with a 5 10% margin and one with a 550% margin. 
These margins are so large to begin with that the small difference between the two is probably of little interest to the 
customer. Because these values lie far away fiom the baseline, their scores will be almost identical. 

L B 

a) SSF 1 : Large input value is desirable 
L B 

b) SSF7: Small input value is desirable 
Figure 3. Graphs of Wymorian standard scoring functions-SSF1 and SSF7 

3.2 
A simple linear combination, shown below, is used to calculate the total evolvability,J of a system f+om the four 
different classes of evolvability. 

Creating Aggregate Figures of Merit 

n 

f = w;xi 
i=l 

Here, n is the total number of FOMs to be combined, wi represents the normalized weight, and x, represents the score 
of the ?' FOM [Daniels, Werner, and Bahill, 20011. These normalized weights must be selected such that they 
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reflect the relative value of traversing from the bottom to top of each bottom-level FOM score. These weights may 
be generated in two ways: direct and indirect. Direct weighting techniques ask the customer to directly select the 
weights, while indirect weighting techniques ask for interval judgments and derive the weights. Indirect weighting 
techniques usually provide better results than direct techniques. The most common indirect weighting technique is 
the paired comparison approach [Buede, 20001. This technique includes methods such as the analytic hierarchy 
process ( A m )  [Saaty, 19801, trade offs [Watson and Buede, 19871, and the balance beam approach [Watson and 
Buede, 19871. 

4 QUANTIFYING EVOLVABILITY- A THEORETICAL PERSPECTIVE 
Evolvability may be measured as a FOM. It is easier to assess a quality like evolvability qualitatively than 
quantitatively. But as we discuss above, a good FOM must be quantitative. It is proposed that evolvability can be 
quantitatively modeled through ontology, system complexity, system reconfigurability, and fbnctional isolation. In 
the following sections we discuss how the characteristics of an evolvable system can be folded into these four 
metrics. 

4.1 
The ontological approach used to model evolvability is based primarily on the work of Mario Bunge [ 1977 & 19791. 
Although philosophical in nature, Bunge’s work, which is mathematically exact and rigorous, has lead to extensive 
research in ontology’s application to the engineering and computer science disciplines by authors such as Wand and 
Weber [1990], Wand and Woo [1991], Bonfatti and Pazzi [1991], and Rowe and Leaney 119971. What follows in 
this section is a compilation of the work on ontology done by these authors, followed by an adaptation and 
expansion of their findings to the concept of evolvability. 

A Formal Definition of Ontology 

4.1.1 
Bunge asserts that the world is constructed of entities or substantial individuals called ‘things.’ Each substantial 
individual, x, possesses its own unique set of (substantial) properties, p(x). It is, however, “impossible to define an 
entity as the set of its properties [. . .] although usually a proper subset ofp(x) will suffice to distinguish x from other 
entities, nothing short of the totalityp(x) of properties ofx  will constitute and individuate it, Le. render it ontically 
distinct from every other entity” [Bunge, 1977: 1 111. Furthermore, a thing may not be separated fiom its properties. 

A thing may either be simple (consisting of only one thing) or composite (consisting of two or more things). 
Any two things can be combined into a composite thing. Furthermore, every composite thing must have emergent 
properties, i.e. properties arising from the combination of things which cannot be directly traced to a property of one 
of the composing things. Evolvability is an example of an emergent property [Klir, 19851. 

composite thing- a system. A system is defined as a composite thing that may not be broken down into non- 
interacting components. As humans, we create a model of a thing by assigning attributes. Some attributes represent 
substantial properties (Le. mass and color), others represent multiple properties (Le. complexity measures), and still 
others represent no properties (i.e. a thing’s name). 

Bunge suggests that a thing, X, may be modeled by a functional schema X,,, = <M, F> where M is a specific 
reference frame and F is the state vector (or total state function) ofX The state vector F is given by 

Definition andModel of a ‘Thing’ 

The architecture in which we desire to measure and quantify evolvability may be modeled as a special type of 

F=<Fj, FZ, ..., F,?:M+VlX V2X ... XV, 

where Fi is the ih state variable (or state function) and V, is the domain of possible values for that variable. The 
concept of ontologically defining the state of a thing is fundamentally similar to describing a model’s state when 
creating a formal model [Zeigler, 19761. As in system dynamics and control theory mise, 19941, a state variable 
can be defined as the smallest set of linearly independent attributes (system variables) such that the values of the 
members of the set, along with external and environmental influences, completely determine the value of all the 
attributes (system variables). Furthermore, a state vector is described as a vector whose elements are the state 
variables. Ln other words, the state vector will consist of enough state variables (representing substantial properties) 
of the proper kind to distinguish one thing from all other things, as discussed above. 

of the state variables. This space, called the possible state space, S ( 3 ,  is given by 
All the possible states a thing (or system), X, can achieve is represented by the Cartesian product of the ranges 

S(X)  = (<x,, x2, ..., x> E V,X V ~ X  ... x V, Ix, = F,(M) } 
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It is clear, however, that an actual thing (or system) cannot achieve every conceivable state. Instead it can achieve a 
subset of these states. This lawful state space, SL(X), is the portion of the state space a thing can occupy given the 
appropriate interdependencies of properties, physical limitations, and other constraints. 

4.1.2 
Because evolvability is the ability of a system to accept a change in requirements (resulting in a change of the 
system state) on a top level it could be viewed simply as the size of the lawful state space. After all, a larger lawful 
state space represents a greater capacity to accept change. It is conceivable that one could compare the evolvability 
of multiple systems on this metric alone. Unfortunately, this comparison would be inadequate because some 
systems may be very evolvable in one direction and not evolvable in another. If the direction of required evolution 
lies in a non-evolvable direction, then the system can not accommodate this change regardless of the size of the 
lawful state space. Furthermore, as is discussed later in more detail, the size of the lawful state space of a system 
only addresses generality (static evolvability) and not the other three classes of evolvability (dynamic evolvability). 
We will, instead, model evolution as an event. 

Evolution is a type of change, and change may be modeled as an event. An event, e, is defined as an ordered 
pair of states, with each state (beginning, s, and end, s') existing in the possible state space. Therefore, an event is 
represented mathematically by the following expression: 

Modeling Evolvability as an Event 

e = <s, s7> where s, s' E S(X) 

All events, however, are not possible. If the end state, s7 ,  is outside of the lawful state space, SL(X), then this change 
may not occur unless the lawful state space is modified to include s'. 

and evolved states. Recall that evolvability is the ability to adapt to new requirements. We, therefore, proceed by 
first describing the original requirements as the initial state, s, followed by defining the evolved requirements as 
final state, s'. A system may adapt to these changes in requirements statically (through generality) or dynamically 
(through adaptability, scalability, or extensibility). Figure 4 shows the possible modes of evolution. The first is 
static evolvability, el: the evolved state lies within the lawful state space of the original system, SL(X). The second 
is dynamic evolvability, e2: the evolved state does not lie within the lawful state space of the original system, but 
the lawful state space may be modified, SL(X'), to include the evolved state. The third is a non-evolvable event, e3: 
the evolved state does not lie within the lawful state space of the original system and the lawful state space may not 
be modified to include the evolved state; this event is not possible. 

The concept of modeling evolvability as an event implies that you must first have knowledge of both the initial 
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Figure 4. Ontological representation of evolvability as an event. Event el represents static evolvability, e2 
represents dynamic evolvability, and e3 represents a non-evolvable event. 
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Take, for example, the Boeing F/A-lIA Hornet and F/A-lSE Super Hornet aircraft [Jackson, 19991. The lawful 
state space for each version of the aircraft represents the performance envelope for that aircraft; the increased 
performance available with the Super Hornet is reflected through a larger lawful state space. Suppose a specific 
mission requires an unrefuelled combat endurance of two hours. This mission lies outside the lawful state space of 
the F/A- 1 SA Hornet (with a combat endurance of 1 hr 45 min), but is within the lawful state space of the F/A-lSE 
Super Hornet (combat endurance of 2 hrs 15 min). This is an example of dynamic evolvability: the lawful state 
space of the system was altered in such a way that includes the new requirements. 

4.2 
Earlier we argue that evolvability is an emergent property, leading to the conclusion that simple things are not 
evolvable. This, in turn, suggests that evolvability is only a property of composite things. Furthermore, a system 
(which is a type of composite thing) may, or may not, possess the emergent property of evolvability. 

A Discussion on the Role of Complexity 

4.2.1 
Many engineers are wary of complexity (with good reason) and adhere to Ockham’s Razor. This heuristic, first 
employed by William of Ockham (arguably the most influential philosopher of the fouiteenth century) [Moody, 
19751, suggests a preference for seeking the simplest solution: “fi-ustra fit per plura quod potest fieri per” (a variety 
other similar Latin phrases exist in the literature). This may be translated as “it is useless to achieve by more things 
what can equally well be achieved by fewer” [Tachau, 1988: 1321. We should remember, however, that Ockham’s 
Razor is only a heuristic and not jump to the conclusion that all complexity is bad. Indeed, Klir [ 1985: 3261 states 
that when striving to obtain certain emergent properties such as evolvability “we search, within given constraints, 
for systems with a high degree of complexity [. . .] In some situations, a certain degree of complexity is a necessary 
condition for obtaining some specific system properties.” While some systems require complexity to develop 
important emergent properties, others require complexity due to the nature of their objectives. These engineering 
systems are inherently complex because the nature of their mission is itself highly complex [Bar-Yam, 20031. Such 
is the case in space systems, air traffic control, and nuclear power plants. Therefore, we argue that in some systems 
complexity is both advantageous and necessary. 

It is important to note, however, that we do not search for needless complexity. After all, “needless complexity 
is one design dimension that every product developer must attempt to minimize” [Meyer and Lehnerd, 1997: 971. 
Needlessly increasing complexity only makes it harder for the engineer to fully understand the system, leading to 
unforeseen problems and increased failures. Rechtin [1991: 1821 suggests that it is “common sense to keep the 
conceptual model as simple as possible while still satisfying the client’s needs [...I Complexity is a breeding ground 
for errors.” For example, components that provide sufficient reliability in simple systems may not provide 
acceptable reliability in complex systems where they occur more fi-equently or are used more often. Furthermore, 
increased complexity usually means increased cost in manufacturing and assembly. Meyer and Lehnerd [ 1997: 991 
state that “reducing complexity almost always reduces direct and indirect costs. Complexity fuels the costs, which 
grow geometrically if not exponentially.” Additional complexity, where it is not necessary, only serves to increase 
production cost and decrease reliability. 

Is Complexity Good or Bad? 

4.2.2 What is Complexity? 
Now we turn our attention to developing a more precise definition of complexity and establishing the difference 
between a complex and complicated system [Waldrop, 1992; Ottino, 20041. Both complex and complicated systems 
are ones that have a large number of components interacting in a large number ways. The difference between the 
two lies in the way these components interact. In a complicated system, a failure or a change in operating 
environment can bring down an entire system. Examples of complicated systems include elaborate mechanical 
watches and snow flakes. A complex system, on the other hand, can adapt to a component failure or a change in 
operating environment. They are complex, adaptive, self-organizing, and usually have a number of autonomous 
components. Examples of complex systems include, highways, the U.S. power grid, the internet, and metabolic 
pathways [Ottino, 20041. Furthermore, complex systems exhibit a kind of dynamism, which is not possessed by 
simply complicated systems, that allows them to exist in a place where the components of the system never quite 
lock into place, yet never quite dissolve into turbulence [Waldrop, 19921. This place is known as the ‘edge of 
chaos.’ 

It is crucial to recognize that engineering systems extend beyond just hardware and software. In many 
instances, humans are a critical part of the system [Bar-Yam, 20031. Take, for example, the Space Shuttle- arguably 
one of the most complicated systems ever built. Despite its many redundant systems, a failure on orbit can have 
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catastrophic consequences. After 20 years of service, the shuttle remains operational by adapting to new 
requirements and new mission objectives. While the hardware and software do not adapt on their own, the men and 
women of the shuttle program, as part of the overall system, supply this capability. They are able to leverage the 
fact that the shuttle has many components interacting in many ways to dynamically address unforeseen problems 
while on the ground or in orbit. The integration of these innovative personnel into the operation of the system 
transforms a complicated system into a complex one. 

4.2.3 Why Evolution Requires Complexity 
Recall that evolvability is an emergent property and is therefore only found in composite things, meaning that some 
amount of complexity is inherently necessary to make evolution possible in the first place. We continue with the 
argument that evolvability demands complexity by suggesting that adding additional capabilities or adapting to a 
new environment increases the complexity of a system [Percivall, 19941. Furthermore, as a system evolves to meet 
new requirements it is not only pulled to the edge of chaos, but also pushed along the edge of chaos in the direction 
of increasing complexity [Waldrop, 19921. Indeed, Waldrop [ 1992: 2951 points out “the deceptively simple fact that 
evolution is constantly coming up with things that are more complicated, more sophisticated, more structured than 
the ones that came before.” The notion of increasing complexity as requirements evolve is especially important in a 
program relying on the spiral development process. This implies that each successive spiral usually results in a 
more complicated system. 

We also approach this ftom a common sense perspective. The more components a system has the more options 
there are to reconfigure that system. Furthermore, the more interfaces a system has, the more “hooks” there are into 
the system. Take, for example, a system with only two components. Generally speaking, there are very few ways 
these two components may be reorganized or that new components may be added. Now, compare this to a system 
with 50 components. Clearly the larger, more complex system has more options in how it may be organized and 
where new components may be added. 

4.2.4 Measuring System Complexity 
Many ways have been proposed to measure complexity and three of them are addressed here. Specifically, 
measures of complexity discussed are based on (1) the complexity of the task at hand, (2) the complexity of the 
assembly, and (3) the amount of information necessary to describe the state of the system. 

The first method of measuring complexity is by assessing the complexity of the task to be performed. This 
measure is based on Ashby’s [ 19561 Law of Requisite Variety. Law of Requisite Variety, as described by Ashby 
[ 1956: 2071, states that “the variety in the outcomes, if minimal, can be decrease further only by a corresponding 
increase in that of R [. . .] To put it more picturesquely: only variety in R can force down the variety due to D; only 
variety can destroy variety.” Here, R represents the regulator (or system) and D may represent some form of 
disturbance. Furthermore, to be successful, the variety (complexity) of a system, at a minimum, must match the 
variety (complexity) of the environment to which it is responding. 

The second method for measuring complexity is by assessing the complexity of the assembly. According to 
general system theory, three types of distinctions may be made between components when dealing with a system 
[Bertalanffy, 19681. Components can be described based on their number, species, and relation. Taking this one 
step hrther suggests that complexity may be measured by these same characteristics. The Boothroyd-Dewhurst 
complexity factor [Meyer and Lehnerd, 19971, developed for design for manufacture and assembly (DFMA), 
measures assembly complexity based on component number, species, and relation. This complexity factor, C, is as 
follows: 

c, = ( N p  + N ,  + N ; y :  

where Np is the total number of parts, N, is the number of types (species) of parts, and N, is the number of interfaces. 
The third method for measuring complexity is by assessing the amount of information required to defme the 

state of the system. There are many methods available to measure this, but the method discussed here is functional 
entropy as described by Min and Chang [ 19911. Here, it is argued that the amount of information required to define 
the state of the system “can be used as a measure of the system complexity, and it can be denoted as the entropy of 
the system.” They go on to assert that “the complexity of a system arises not only due to the number of components 
and the characteristics of each component, but also to the types of interconnections between the components.” A 
detailed discussion on the calculation of functional entropy, HF, is provided by Min and Chang [1991]. 
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4.3 
The ability of a system to reconfigure itself (defined as adaptability) is one of the four fbndamental ways a system 
may evolve to meet new challenges. As discussed above, reconfiguration is one method for altering the lawful state 
space of a system. In the sections that follow we discuss reconfigurability in more detail. 

The Advantage of Reconfigurable Systems 

4.3.1 Reconfigurable Systems 
One of the fundamental keys to system reconfigurability is modularity. IEEE Std. 610.12 [ 19901 defines 
modularity as “the degree to which a system or computer program is composed of discrete components such that a 
change to one component has minimal impact on other components.” Modularity is advantageous when dealing 
with complex systems because it allows the engineer to isolate much of the system’s complexity within different 
modules. These modules can then interact with the rest of the system through simple interfaces. Modularity also 
allows for modules to be rearranged to optimize the system for a given task or to adapt to achieve new objectives. A 
more complete discussion of modularity is provided by Baldwin and Clark [1999]. 

Modularity, however, does little good (fiom a standpoint of reconfigurability) unless the system also has 
standard interfaces. Regardless of how the system is modularized, there is little advantage if components only fit 
together in one way due to unique interfaces. Therefore, equally as important as modularity is the standardization of 
interfaces. In addition, given the same number of modules, an increase in the number of available interfaces 
significantly increases the recmfigurability of a system. Simple, standard, and available interfaces are central to 
enabling the reconfigurability and evolvability of a system. Rechtin [ 199 1 : 291 suggests that “the greatest leverage 
in systems architecting is at the interfaces.” 

Finally, a reconfigurable system is not achieved for free. Reconfigurability often comes at the cost of other 
performance metrics. In next generation computer systems, for example, Verbauwhede and Chang [2002] describe 
the tradeoff between power and reconfigurability. Other similar tradeoffs may exist in different systems; such 
tradeoffs might include mass-reconfigurability, complexity-reconfigurability, and reliability-reconfigurability. 

4.3.2 
One example of the advantages gained by using a reconfigurable system can be seen in the use of MR robots in 
space applications as described by Yim et al. [2003]. Here, it is described how MR robots provide, among other 
things, adaptability and redundancy. They discuss the use of PolyBot, a MR robot system consisting of two types of 
modules, to demonstrate how one system may be used to perform the following space missions: space manipulation, 
surface mobility, and digging. Redundancy is achieved through having many repeated modules. It should be noted, 
however, that as the number of modules (and hence redundancy) increase the probability of a module failing also 
increases. This is an example of one of the tradeoffs discussed above. 

4.3.3 
Distributed satellite systems are another example of reconfigurable systems. These systems distribute the 
fbnctionality of the system between multiple satellites in a satellite cluster. The satellites in this cluster 
communicate and share the burden of different mission functions. Together they act as one unified system. In many 
cases, such a system is more attractive than a monolithic design because neither the geometry or the number of 
satellites in the system is fixed. This is especially valuable in high cost, high value missions where the system’s 
capability is slowly increased over time [Martin and Stallard, 19991. 

An excellent example of a distributed satellite system is the TechSat 21 program, described in detail by Martin 
and Stallard [ 19991. This program took advantage of the distributed satellite system approach to synthesize a very 
large aperture for space based radar. Saleh, Hastings, and Newman [2001] discuss how the TechSat 21 satellite 
cluster might be reconfigured to operate in a geo-location mode, instead of the baseline radar mode. 

Example: Modular Reconfigurable (MR) Robots in Space Applications 

Example: Dhtributed Satellite Systems and the TechSat 21 Program 

4.3.4 Measuring Reconfigurability 
Farritor [ 19981 discusses a method for enumerating the modular design space of a robotic system. In essence, this 
method identifies the number of ways modules in a modular robot may be reconfigured. Here, we propose to use 
the foundations of this metric as a method for measuring reconfigurability between multiple systems in a relative 
fashion. The system that may be reconfigured in the largest number of ways, based on this metric, will be deemed 
the most reconfigurable. 

In his assessment of the modular design space, Farritor introduces the quantity Dlimbs which represents the 
number of limbs that can be created fiom an existing suite of modules and end effectors. The example provided 
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here is for a system with two types modules, A and B, and one type of end effector, F. This model, of course, could 
be modified to include n types of modules. Given NA modules of type A and NB modules of type B, it can be shown 
that the total number of limb assemblies possible is given by 

where j is the number of modules of type A ,  k is the number of modules of type B, and i is the number of limbs used. 
In this case, the number of limbs used, i, is the same as the number of end effectors because each limb must end with 
an end effector. After this, Farritor continues by discussing the contribution of the number of ports available on a 
central power/control module to which all the limbs are mounted. This contribution, however, does not apply to the 
type of systems that will be considered in the following sections. 

4.4 
Functional isolation is another key to system evolvability. An evolvable system should be built on the aspects of the 
system which are most likely to remain unchanged [Isaac and McConaughy, 19941. These “islands of architectural 
stability” [Percivall, 19941 enable a complex system to evolve much quicker and easier than what might otherwise 
be possible. Indeed, Rechtin [I9911 states that “complex systems will develop within an overall architecture much 
more rapidly if there are stable intermediate forms than if there are not.” These islands of stability should be 
identified by the system architect as early in the development process as possible. As with reconfigurability, islands 
of architectural stability suggest a modular approach. Such an approach allows the engineer to isolate core 
functionality in a set of stable, autonomous modules. 

Such functional isolation, however, implies that focus should be placed on the architecture level. Here we 
introduce the concept of an Open Architecture as described by Buede [2000]. An open architecture is one where the 
hardware and software interfaces are defined such that additional resources can be added to the system with little or 
no adjustment. Two important aspects for an open architecture when seeking an evolvable system include openness 
and interoperability. The SMC Systems Engineering Primer and Handbook [2004] defines these properties as 
follows: 

The Necessity of Functional Isolation, Open Standards, and Interoperability 

Open Standards: Parts, modules, objects, products and systems are based on vendor-independent, non- 
proprietary, publicly available, and widely accepted standards. Standards allow for a transparent environment 
where users can intermix hardware, software, and networks of different vintages fiom different vendors to meet 
different needs. 
Interoperability: The ability of systems, units, or forces to provide and receive services &om other systems, 
units, or forces and to use the services so interchanged to enable them to operate efficiently together. 

The importance of open standards and interoperability should be self-evident. They ensure that all hardware and 
software will interface in the event that evolving requirements or other circumstances require the components to be 
reconfigured or otherwise adapted. Using Apollo XI11 as an example, open standards and interoperability ensure 
that there are not square C 0 2  filters on the command module and round filters on the lander (you don’t find yourself 
making “a square peg fit into a round hole”). 

5 CASE STUDY- EVOLVING LUNAR MISSIONS TO MARS MISSIONS 
We now transition to a more practical perspective and address how the ideas proposed above may be applied to 
quantifying evolvability in real-world problems. Recent events have turned the eyes of the United States back to the 
moon, this time as a stepping stone to missions beyond. In his speech at NASA Headquarters in Washington, D.C. 
on January 14,2004, President George W. Bush said that “returning to the moon is an important step for our space 
program. Establishing an extended human presence on the moon could vastly reduce the costs of further space 
exploration, making possible ever more ambitious missions.” He went on to say that “with the experience and 
knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to 
Mars and to worlds beyond.” It is clear, therefore, that the systems developed to accomplish these near term lunar 
missions should lend themselves to adaptation in order to meet the requirements imposed by Mars missions. These 
systems must be evolvable. Indeed, the President’s Commission on Implementation of United States Space 
Exploration Policy [Aldridge et al., 2004: 271 recommends that NASA “design an exploration architecture that 
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evolves iteratively, systematically through a series of so-called spiral developments.” Here we apply the 
quantitative approaches to assessing evolvability discussed in the previous sections. 

Before proceeding, a few words about the models presented in this case study. When generating a model, it is 
always important to remember that “a model is not reality’’ [Rechtin, 1991: 581. As such, a model should not be 
taken at face value and should always be subject to review and improvement. The models proposed here are early 
examples of how the ideas introduced above may be applied. Much of the author’s future work involves 
readdressing and refining these preliminary models. 

5.1 Generality 
As the only static mode of evolvability, generality is probably the most straightforward of the four classes of 
evolvability. Generality may be viewed as the “do-nothing” alternative. If the evolved state (Mars mission) lies 
within the lawful state space of the original architecture (lunar mission), the architecture is assigned a generality 
score of one, otherwise it is given a score of zero. 

For this particular case study, potential state variables include delta-V [Hale, 19941, habitable volume during 
different mission phases [Fraser, 19661, power system requirements [Landis, McKissock, and Bailey, 19991, and 
propulsion system selection [Hurlbert, 19931 to name a few. 

To make this assessment, we must first address what state variables define the state space of this architecture. 

5.2 Adaptability 
Adaptability modifies the lawful state space of the architecture. Unfortunately, it is difficult to say exactly how the 
lawful state space will be modified by reconfiguring elements in a potentially unknown way. Therefore, we propose 
to measure adaptability simply as a function of how reconfigurable the system is, without consideration of the 
modified shape or size of the lawful state space. 

this measure as it applies to the case study at hand, we generate the following expression 
To do this, we first turn to Farritor’s measure of reconfigurability introduced in a previous section. Recasting 

where Dreconjg is the measure reconfigurability, NA is the number of modules of type A ,  NB is the number of modules 
of type B, and so on. The number of propulsion modules is represented by i. Notice that in this instance, propulsion 
modules take the place of Farritor’s end effectors. This can be done because it is assumed that every configuration 
of vehicles in a 1unarMars architecture must terminate in a vehicle with propulsive capability (otherwise the stack of 
vehicles would just sit in Low Earth Orbit). Furthermore, recall that this system must be modular and have standard 
interfaces to be reconfigurable. Therefore we define the reconfigurability score, Fadopr, as follows 

where N M ~ ~ ~ ~ ~ ~  is one if the architecture is modular, zero otherwise; and Nsf~Inre~uces is one if the architecture has 
standard interfaces, zero otherwise. By definition, therefore, if the architecture is not modular with standard 
interfaces, the reconfigurability score is automatically zero. 

function (SSFl), we obtain the following expression for the adaptability score 
Clearly, a large reconfigurability score is desirable. Now applying this metric to a Wymorian standard scoring 

1 
Adaptability = 2*S(B+Fdap,-2*L) 

’ + ((B - L)/(Fudupt - L))  

Now we must define the quantities B, S, and L. For this application, for example, we may assume a baseline of B = 

5, representing two modules and one propulsion module (i.e. Apollo- lander, command module, and service 
module); a lower bound ofL = 0, representing no modules; and a slope of S = 0.2. 

cases, the Boothroyd-Dewhurst complexity factor may be substituted as an approximate measure of 
In some instances, Farritor’s measure of reconfigurability may be too complicated to easily calculate. In these 
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reconfigurability. The other assumptions of modularity and standard interfaces must, of course, remain the same. 
Under these conditions a change to the architecture (increase/decrease in modules or interfaces) causes the same 
trend in Farritor's measure of reconfigurability and the Boothroyd-Dewhurst complexity factor (they both increase 
or both decrease). Although the same trends are evident, they do not respond in the same way to identical changes. 
For example, adding a module has a much greater impact on the reconfigurability measure than on the complexity 
measure . 

5.3 Scalability 
Scalability also modifies the lawful state space of the architecture, but in a way much more measurable than in 
adaptability. We begin by assessing how much the lawful state space must stretch to engulf the evolved state. The 
distance from the edge of the original lawful state space to the evolved state, along the direction of the Z~ state 
variable, is defined as d,. If a state variables in the evolved state lies within the original lawful state space, d, = 0. 

Next we assess the difficulty of stretching the state space along the direction of the ?' state variable by a 
distance d,. This may be done in a number of ways. The customer, for example, may be allowed to pick the 
difficulty (perhaps on a scale of 1 to 5). This, however, is not the recommended approach. Instead difficulty should 
be assigned based on the properties of that particular state variable. Power, for example, could be assigned a 
difficulty factor based on the difficulty of increasing the size of the solar arrays or increasing the size of the reactant 
tanks for fuel cells. Or, for the propulsion system, difficulty may be assigned based on properties such as propellant 
selection, if the system is pressure-fed or pump-fed, if the system is liquid or gaseous, or if the OMS and RCS 
systems are integrated. Regardless of the methods or properties chosen, this difficulty factor, z,, should be carefully 
developed with input from the customer. 

To each distance, d,, we also apply a weighting factor, w,. This weighting factor addresses the scale of that 
particular state variable. This prevents a variable such as delta-V (with magnitudes in the hundreds and thousands of 
d s )  from overpowering something like crew size (on the order of 5 to 10 people). Given this information, we 
define the weighted scaling distance, FscaIe, as 

I n  

where n is the number of state variables. Here, it is clear that a lower FScale is desirable. Indeed, if Fscale = 0 then the 
evolved state is included in the original lawful state space and no scaling is necessary. This is the most desirable 
state and should result in a scalability score of one (it also results in a generality score of one). Therefore, we use 
SSF7 and obtain the following expression for the scalability score: 

1 Scalability = 1 - 
1 + ((B - L)/(FSC& - L))-2's(B+F=,Jb-2'L) 

Defining the quantities B, S, and L for this application, we will assume a lower bound of L = 0. The values of B and 
S may be determined based on the state variables chosen to represent the system. 

5.4 Extensibility 
As with the other forms of dynamic evolvability, extensibility modifies the lawful state space. Furthermore, like 
adaptability, there is no good way to measure how extensibility may alter the lawful state space. After all, in 
extensibility we are changing the state space by adding an unforeseen number of components, of an unknown type, 
with unknown properties. Because of these unknowns, much work remains to be done before such a relationship 
can be suggested with sufficient confidence. A relationship for extensibility would likely be structured in the same 
manner as adaptability and scalability. First, a measure of extensibility, Fexrend, would be generated. Then, this 
metric would become the input to a Wymorian standard scoring function (SSF1 or SSF7 depending on if a high or 
low value of Fared is desired). The output of this scoring function would become the extensibility score. 
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5.5 Evolvability 
To calculate the total evolvability score, we use a simple linear combination. The relative weighting of each class of 
evolvability is up to the customer and weights may be assigqed using any of the methods mentioned earlier. We 
come, therefore, to the following expression for the total evolvability FOM score 

Evolvability = (A *Generality) + (B*Adaptability) + (C*Scalability) + (D*Extensibility) 

Furthermore, the evolvability score shows compensation as described by Daniels, Werner and Bahill [200 11. A high 
adaptability and extensibility score with a low generality and scalability score is, given similar weighting, just as 
good as a low adaptability and extensibility score with a high generality and scalability score. After all, 
architectures must not exhibit all classes of evolvability to effectively evolve- excelling in only one class may be all 
that is necessary. 

6 CONCLUSIONS 
Current events have made evolvability a sought after attribute. Here we propose measuring evolvability as a FOM. 
This helps us address the following question: is evolvability really a desirable property? By considering evolvability 
among a host of other FOMs (such as cost, reliability, performance, etc.) the customer can decide if they can afford 
a highly evolvable system. As we mention earlier, evolvability is not fiee. It usually comes at the price of other 
performance metria, primarily cost and reliability. 

The approach proposed here provides a foundation for fiirther work in quantifying evolvability. Furthermore, 
the case study presents an early example of how these ideas might be applied to an actual problem. Much work, 
however, remains in refming these measures, especially the measure of extensibility. With more work, we believe 
reliable and accurate measures of evolvability may be established. 
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